Lipschitz stability in an inverse problem for the Kuramoto–Sivashinsky equation
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation
In this article, we present an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky (K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability for this inverse problem is our main result a...
متن کاملLipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation
In this paper we study the inverse boundary value problem of determining the potential in the Schrödinger equation from the knowledge of the Dirichlet-to-Neumann map, which is commonly accepted as an illposed problem in the sense that, under general settings, the optimal stability estimate is of logarithmic type. In this work, a Lipschitz type stability is established assuming a priori that the...
متن کاملLipschitz stability in an inverse hyperbolic problem with impulsive forces
Let u = u(q) satisfy a hyperbolic equation with impulsive input: ∂ t u(x, t)−4u(x, t) + q(x)u(x, t) = δ(x1)δ(t) and let u|t<0 = 0. Then we consider an inverse problem of determining q(x), x ∈ Ω from data u(q)|ST and (∂u(q)/∂ν) |ST . Here Ω ⊂ {(x1, . . . , xn) ∈ R|x1 > 0}, n ≥ 2, is a bounded domain, ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1}, ν = ν(x) is the unit outward normal vector to ∂Ω at x ∈ ...
متن کاملIncreasing stability in an inverse problem for the acoustic equation
In this work we study the inverse boundary value problem of determining the refractive index in the acoustic equation. It is known that this inverse problem is ill-posed. Nonetheless, here we show that the ill-posedness decreases when we increase the wave number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2013
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2012.716589